Syllabus on discipline (TECh 5309) The theory of elementary particles for specialty "6M060400-Physics" Spring semester, 2017-2018 academic year, Course 2

Academic course information

Discipline's	Discipline's	Туре	No. of hours per week			Number of	ECTS
code	title		Lect.	Pract.	Lab.	credits	
TECh 5309	The theory of	Elective	1	1	0	2	3
	elementary						
	particles						
Lecturer	TakibayevN.Zh., d.s.pm., academic		nic Office	hours	Scheduled		
	of NAS RK, professor						
e-mail	E-mail: <u>takibayev@gmail.com</u>						
Telephone	Telephone: 2	925-133;	8-777-70	04- Audito	ry	31	9
number	0396						

Academic	Typeofcourse"The theory of elementary particles" iselective				
presentation of	componentanditspurpose: TheoreticalPhysics.				
the course	The aim of the course: to learn to form a system of competences in the context				
	ofqualification requirements. As a result of the discipline, the student will be able				
	to:				
	– analyze educational situation and offer direction to solve it;				
	– use methods (research, calculation, analysis, etc.) inherent to the field of study				
	(specifically) individually or in a0 group teaching and research activities;				
	- synthesize, interpret and evaluate the learning outcomes of discipline, modules,				
	midterm exam content (specifically);				
	– constructive educational and social interaction and cooperation in the group;				
	– propose to consider a problem, to reason its importance;				
	– accept criticism and to criticize;				
	– work in a team;				
	- recognize the role of taken course in the implementation of individual learning				
	paths. The system of descriptor verbs must be used during the formation of				
	competences				
	– active and interactive methods is recommended to ensure deeper understanding				
	and learning of educational material and to achieve learning outcomes of the				
D : :/	course (individual researches, group projects, case studies and there methods).				
Prerequisites	Mathematical analysis, the theory of functions of complex variables,				
	differential equations, mathematical physics, statistical physics, physics of				
De et se enjeite e	Takan kuawladaa will ha waad in naaanah wark				
Post requisites	I aken knowledge will be used in research work.				
Information	Literatures (with an indication of the authors and data output), the				
resources	availability(number), software and consumables with information about where				
	you can getthem.				
	I. A. Bettini, infoduction to Elementary Particle Physics, Cambridge University Press 2008				
	2 M Thomson Modern Particle Physics Cambridge University Press				
	2013.				
	3. C. Amsler, Nuclear and Particle Physics, IOP Publishing, Bristol, 2015.				
	4. D.H. Perkins, Introduction to High Energy Physics, Cambridge				

	University Press, 2000. Hochenergiephysik, Addison-Wesley, 1990. (out of press)				
	5. B. Povh u.a., Teilchen und Kerne, Springer, 8. Auflage, 2009.				
	(Paperback) Encyclopedia of Applied High Energy and Particle Physics,				
	Ed. R. Stock, Wiley 2009.				
	6. Y. Nagashima, Elementary Particle Physics. Wiley. Vol. 1: Quantum Field Theory 2010, Vol. 2: Foundations of the Standard Model 2013				
	7 R Cahn G Goldhaber The Experimental Foundations of Particle				
	Physics Cambridge Univ Press 2009				
Academic	Academic Behavior Bules:				
policy of the	Compulsory attendance in the classroom the impermissibility of late attendance				
course in the	Without advance notice of absence and undue tardiness to the teacher is				
context of	estimated at 0 points.				
university	Academic values:				
moral and	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge				
ethical values	control, and disrespectful attitude towards teachers. (The code of KazNU				
	Student's honor)				
Evaluation and	Criteria-based evaluation:				
attestation	Assessment of learning outcomes in correlation withdescriptors (verification of				
policy	competence formation during midterm control and examinations).				
	Summative evaluation:				
	evaluation of the presence and activity of the work in the classroom; assessment				
	of the assignment, independent work of students.				
	The formula for calculating the final grade.				
	Final grade for the discipline = $\frac{1C1 + 1C2}{2} \cdot 0.6 + 0.1MT + 0.3FC$				
	Below are the minimum estimates in percentage terms:				
	5% - 100%: A 90% - 94%: A-				
	85% - 89%: B+ 80% - 84%: B 75% - 79%: B-				
	70% - 74%: C+ 65% - 69%: C 60% - 64%: C-				
	55% - 59%: D+ 50% - 54%: D- 0% -49%: F				

Calendar (schedule) the implementation of the course content:

Wee	Topic title (lectures, practical classes, MSWT)	Number	Maximum	
ks		of hours	score	
	Module 1			
1	Lecture-1 (L-1). Particles and fields. Brief overview of	1	-	
	empirical material.			
	Seminar -1 (S-1).Elementary particles.	1	5	
2	L-2. Elementary particles and the universe.	1	-	
	S-2.Cosmological singularity.	1	5	
3	L-3. Evolution of the Universe.	1	-	
	S-3.Relic radiation.	1	5	
	MSWT 1. Assignment submission № 1: Evolution of the Universe.	1	20	
4	L-4. Regularities of fundamental interactions.	1	-	
	S-4. Quantum properties of particles. Spin. Isospin.	1	5	
	Module 2			
5	L-5. Elementary particles and stars.	1	-	
	S-5.Properties of neutrinos.	1	5	

	MSWT 2 Assignment submission № 2: Neutron stars.	1	20
6	L6.Neutron stars.	1	-
	S6. Collapse of the star.	1	5
7	L7.Discrete symmetries.	1	_
	S7. Fundamental interactions.	1	5
	MSWT 3. Assignment submission № 3: Internal hadron	1	25
	symmetry and quark model.		
	1 st Intermediate Control (IC1)		100
8	Midterm (MT)		100
8	L-8.Internal hadron symmetry and quark model.	1	-
	S-8.Isotopic symmetry.	1	5
	Module 3		
9	L-9. Quark model: additional symmetries.	1	-
	S-9. Symmetries of hadron physics.	1	5
	MSWT4. Assignment submission № 4: Quark model:	1	10
	additional symmetries.		
10	L-10. The standard model.	1	-
	S-10. Main conclusions and possibilities of development of	1	5
	the standard model.		
11	L-11. Dynamic symmetry breaking and technical-color	1	-
	models.		
	S-11.Composite particles. Leptons. Quarks.	1	5
	MSWT5. Assignment submission № 5: Dynamic symmetry	1	10
10	breaking and technical-color models.		
12	L-12.Lepton-nucleon scattering and the quark model.	1	-
	S-12. The structure of hadrons and hadron-hadron	1	5
12	Interactions.	1	
15	L-13. Calibration fields.	1	
	S-13. Quantum gauge theories.	1	<u> </u>
14	MS w 1 6. Assignment submission N_{2} 6. Calibration fields.	1	20
14	L-14.Spontaneous violation of global and local symmetries.	1	
15	S-14. The Higgs mechanism. The Salam-weinberg model.	1	5
15	L-15.Experimental methods.	1	-
	S-15. Modern experimental installations.	1	<u> </u>
	wis w 1/. Assignment submission № /: Modern	I	25
	2 nd Intermediate Control (IC2)		100
	2 Intermediate Control (IC2)		100
	Exam Total		100
Note:	Independent work of students with teacher is 7 hours for	semester. 3	5, 7, 9, 11, 13
and 15 weeksareincludedintosyllabus (assignmentsubmission)			

Lecturer	TakibayevN.Zh.
Head of the Department	Abishev M.E.
Chairman of the Faculty Methodical Bureau	Gabdullina A.T.